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Calculation of back-reflected intensities of a Na-atom beam by 
a standing evanescent E-M field 

J Murphyt, P Goodman+ and Andrew Smith$ 
t School of Physics, University of Melbume. Parkville. Victoria 3052, AusUah 
I. Depamnent of Physics, Monash University, Clayton, Vlcloria 3168. Ausrralia 

Received 19 November 1992 in finat form 13 April 1993 

Abstract. A method is described for the compulation of the back-seaftered intensities of atomic 
beams, diffracted from the evanescent field generated outside an optical plate by hemal counter- 
propagating laser beams The method derives from a procedure developed for the similar but 
imponantly differing problem of lowenergy electron diffraction (LEED). Modifications to that 
theory required for the present problem bring the equations closer to the reflection high-energy 
electron d i m t i o n  (RHEED) solution propased by Ichimiya. Preliminary calculations for the 
stmng-field case indicate that diffracted beams occur with intensities of 7% and 8% of the 
incident beam which if correct should lead to detectable diffraction effects. 

1. Introduction 

Recently, atomic de Broglie wave diffraction by a standing evanescent wave field has been 
investigated both theoretically [I] and experimentally [2], for the case of a monochromatized 
Na-atom beam incident on the vacuum interface of a light-transmitting quartz block. The 
solution suggested in [ 11, namely that of a Green’s function iteration, has been hied 
previously in electron diffraction and found to be very slowly convergent. This problem, 
present in the high-energy case of forward scattering, is likely to be exacerbated in the 
case of the complete solution which includes both backwards and forwards scattering. The 
altemative approach, known in electron di&action physics, as ‘multi-slice’ 131, has all 
the advantages of a closed, summed solution which is limited to elastic or pseudo-elastic 
processes. This formulation has been expanded to a complete solution which includes back- 
scattering by Lynch and Moodie [4] and Lynch and Smith [5]. For the present problem, 
involving the transitions of a two-level atom, this description is valid and the method should 
transfer, with consequent substantial savings in computation effort and time when compared 
with the above method [I]. 

The present paper gives firstly a brief discussion of the approach and a few basic 
equations, and secondly some initial results, for both weak- and strong-field cases. 

2. Solutions to Schrodinger’s equation 

The time-independent Schriidinger equation may be written as 

v:$~ + Y ( E  - v ) $ ~  = O with y = 2m/fi2 
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(1) 
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in a completely general way, where r represents spatial coordinates in one, two or three 
dimensions according to the particular problem. In applications in three-dimensional space 
involving a potential V periodic only two dimensions it is usual to choose the coordinates 
x ,  y, z so the unique direction definable in most laboratory experiments coincides with 
either the y (or z )  direction, and to Fourier transform the equation with respect to the non- 
unique directions in which 1’ is periodic ( x z / x y )  (‘semi-reciprocal’ space: [1,4]). This 
then permits us to write ( I )  in matrix f m  and as a second-order differential equation in 
one dimension as 

dZ$,/d2Y = -WYM ( 2 )  

with y as the unique direction, and where M = y(E - V) is a square matrix in which 
E and V form the diagonal and off-diagonal terms respectively, i.e. the diagonal elements 
contain the terms k2(y) (with k = Zn/h), and the off-diagonal elements contain the Fourier 
coefficients of the optical potential. 

There is some advantage at this stage in considering the solution to the transmission 
electron diffraction case, where for example Cowley [6] has shown that the matrix M may 
be replaced to a good approximation by a matrix L in which the diagonal terms have 
been linearized (the so-called ‘forward-scattering’ approximation). Using the coordinates 
of our present problem, where the free (non-quantized) momentum is restricted to the y 
direction and there is no z dependence in the equation, the forward-scattering solution for 
Schradinger’s equation is 

(3) 

where h is the diffraction space coordinate reciprocal to x and $J is now used to denote the 
wavefunction in ‘semi-reciprocal’ space coordinates. This solution applies provided a matrix 
L can be found for which the interaction potential (off-diagonal) terms are independent of 
y. The diagonal terms consist of the y-resolved momenta k, which are not functionally 
dependent on y. This condition will be referred to throughout this paper, or is an implied 
condition of future equations. The operator form of solution to (3) using the scattering 
matrix s = exp(iLy), may be brought to numerical evaluation, either through the Taylor 
(i.e. Born series) expansion 

(4) 

+ ( h .  Y) = exp(iLy)+@) = S+,(O) 

S = 1 + (iLy) t (iLy)’/2! + (iLy)’/3! + . . . 

S = exp(iLdy,) exp(iL6y2) exp(L6y3). . . 
or through the product expansion 

(5) 

with y = 6y i .  Equations (4) and (5 )  formally represent alternative approaches to solving 
(11, namely the Born series expansion, and the multi-slice expression (analogous to the 
Feynman path integral approach [3]), respectively. 

In the more general case including back-scattering the complete second-order equation 
(2) must be solved. Adopting now a method for reducing the order of the differential 
equation, given in [41, we substitute the first differential of the wavefunction 

+’ = d+/dy 

giving 

d$J‘ldy = -WY)+. 
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Intrcducing 'supermatrix' notation [7,4] allows us more compact notation. Hence, 

d6 fdy  = M ( y ) 6  (6) 

becomes our master equation, with 6 a supercolumn vector of order two whose elements 
are the infinite column vectors $, $', that is 

i.e. the scattering amplitudes and their derivatives for the various diffracted directions, and 

is the 2 x 2 matrix whose elements are square matrices: M(y) has the elements defined 
previously; I is the identity matrix of the same order as M, and 0 is the equivalent null 
matrix. 

If M is independent of y. the solution to (6) may be written as 

6 = exp(My)6(0) = SS(0). (7) 

This equation is now analogous to (3). but in supermatrix form so that both backward and 
forward scattering are included. The solution differs from the analytical form of (7) when 
M is dependent of y; it is then useful to consider slicing the operator in order to obtain 
matrices which may be considered as independent of y. following the logic of (5). 

Hence, expanding S as the product series 

s = spsp-, ... SI (8) 

gives us the multi-slice expansion, in which the general term sp-" = exp(M,-. Ay,-") 
is called the 'slice operator'. These expressions will be made applicable by taking slices 
normal to y sufficiently thin so that the potential is effectively constant within each slice. 
In (7) the complex exponential of (3) is not evident, although required for elastic scattering. 
The apparent inconsistency is resolved in the derivation of exp(MA): taking a constant 
slice thickness 6y = A, we may expand 

On the other hand the terms may be combined differently to give 
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This may be written in matrix form as 

e x p ( M 4  
=I( exp(i AM1/’) + exp(-i AM1/’) -iM-’/’(exp(i - exp(-i AM1/’)) 

2 iM’/’(exp(i AMIiz) - exp(-i AM1/’)) exp(i + exp(-i AMID) 

( 9 4  

which in tum condenses into 

cos(MIPA) M-1/2sin(M1/zA) 
exp(MA) = (-MIDsin(M’/ZA) cos(M’/*A) 

It is clear now that (9a)  above is the complex exponential equivalent to that in (3), with 
the inclusion of the backward scattering, giving the analytical advantage of yielding the 
dual forms of Bom series expansion and unitary matrix, following the path shown earlier 
in (4) and ( 5 )  for forward scattering. 

The operator (96) is evaluated numerically using a Jacobi routine which diagonalizes 
this scattering matrix by a complex plane rotation 

xiMx = P 

where x and xt represent a unitary matrix and its inverse, and p is the diagonal matrix 
with the eigenvalues P I ,  pz. . . . ,go. as entries. The slice operator may now be written as 

for the pth slice. 
In general the equal-thickness slices will not have the same potential. so the ps will be 

slice dependent. It is a particular feature of this expansion that (8) can be evaluated by the 
sequential multiplications of the slice operator (lo), with application of boundary conditions 
needed to determine the amplitudes of the diffracted beams being carried out as a final step. 

3. The Hajnal-Opat equations 

Figure 1 shows the geometry of the experiment for reflection-diffraction of atoms from 
a standing evanescent wave field. We define wg and w as the characteristic frequency of 
the two-level atom and the frequency of the incoming light beam respectively. This beam 
directed from a laser into the quartz block is retro-reflected to give a standing wave at the 
quart-vacuum interface. Under conditions of total internal reflection, a standing evanescent 
wave field is generated above the interface and extending into the vacuum. Upon entering 
this vacuum field, the ground state atom experiences a gradient force which is repulsive 
or attractive for a positive or negative detuning Ao = o - 00, in agreement with the 
KramersKronig relationship. 

The Hajnal-Opat formulation [ 11 of Schrodinger’s equation for this interaction is given 
as 

(dzldYz t K;n)+n(Y) = - ( ~ ~ E o ~ A / ~ ’ ) [ + ~ + I ( Y )  t $h-i(~)Iexp(-qy) (11) 
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Figure 1. Sketch of the exprimental 
set-up used by Opat and Hajnal for 
reflection-diffraction of waves from a 
standing evanescent wave field. 

with mA the atomic mass, and where 

K;,, = K,” - Q2n2 - 2nQK,  - (2m~/h)(wg - w) 

K;,, K: - Q2n2 - 2nQKx n even. (13) 

n odd (12) 

K,. F K ,  + n Q , where fr Q = transferred photon momentum, along the x direction, while 
Q and q are the x -  and y-resolved components of the electromagnetic wave vector given 
by 

Qh+iqZ  = (o/c)N(sinB)h+i(w/c)(Nsin’B - 1)”21 

where N is the refractive index of the q u m  block and h and I are the unit vectors of 
momentum parallel to the x and y directions [l], and 

C E O  = (al€lb)Eo 

where E is the electric dipole operator and EO is the electric field amplitude. 
An incoming atom, which we assume to be a plane wave, is scattered by the electric 

field and emerges in plane-wave solutions that must satisfy (1 1). Initially the atom is in the 
ground state. In making a transition to the excited state by the absorption of a photon from 
either of the counter-propagating evanescent waves there will correspondingly be a positive 
or negative increment in the x momentum of the atom leading to a transition to either of the 
n = &I (odd) diffraction orders. A further transition back to the ground state by stimulated 
emission will then result in a further momentum exchange due to the emission of a photon 
to either counter-propagating wave, resulting in a transition from n = I to n = 1 f 1 + 2.0, 
representing a return to even states. Hence, the ground and excited state atoms are to be 
found in the n-even and n-odd momentum states respectively. Furthermore, for n-odd K ,  
has a contribution proportional to the detuning (o - wg) given by the last term in (12) 
which cancels for n even. Hence the odd diffraction orders will move in position across 
the stationary even orders as the detuning is varied 

Hajnal and Opat used the integral equation method to solve (1 I), using the solution . 
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where 

= YPEo[(Q~+I(Yo) + *,-~(Yo)lexp(-qYo)) 

and G, is a Green function: 

G,(Y - YO) = exp(i K,IY - Y01)/2i Kyn. 

This is an iterative method, where 0, is cast in an integral series form which identifies 
with the Born series (see (4)). This series is slowly convergent when Eo is large. 

4. Computed intensities using the LynchSmith procedure 

The altemative method using LEED theory involves rewriting (1 1) in matrix notation as 

and slicing the potential normal to the y-axis so that slice boundaries are parallel to the 
optical interface in the experiment. If we wish to keep slice thicknesses Ag constant, 
we need to choose a slice sufficiently thin that in the region of maximum field gradient 
neighbouring y = 0, the interaction term may be assumed constant; i.e. we wish to map 
the exp(-qy) field dependence as a step function in y. as shown in figure 2. This allows 
us to adopt the 'zero-layer' approximation of electron diffraction [4], with y-independent 
interaction terms in each slice. 

LynchSmith procedures then involve applying boundary conditions to the cumulative 
product of (8). Writing 

= exp(i KIV)A + exp(-i K l g P  

for region I, as defined in figure 2, where KI denotes a diagoni 
elements, and 

ith K, rms as 
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"-0 Thickness: 6000A 
Deruning; LCHr 
E field: 4900 V/m 
No. of slicer: 700  ~n_l"~ 'p--J No. of beams: 4 

84."  I RE+" /I Region 111 

,"Cid$"l 
WO*% 

XCXI YII " l t l  
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Ficure 3. Intensities of specular (n = 0) and 
n = + I  diffracted beam obtained from aCbeam 
calculation for the weak-field case ( E  = 4900 V 
m-') and field depth of MMO A, using 700 sli- 
and a detuning of 1 GHz. 

w Rollosbd 

H i " -  
K 

Figure 2. Diagram showing the mmputational scheme for 
slicing Ihe oplical patenlid in region 11. Here, region I conlains 
the source and detecmt system and region 111 represents the 
refractive medium. Skps show a qualitative similarity with 
the exp( -qy)  field dependence. 

For region III, since there is no wave incident from the right 

4111 = exp(i Kly)E 

exp(i K,H)E = Sl,(A + B) + S12Kr(A - B) 
i K I ~ x ~ ( ~ K I H ) E  = &(A + Bj + Szzi Ki(A - B) 

KI = Km. 
Applying boundary conditions 

(16) 

with H = nu the total depth of the potential ( n  is the number of slices and a is their width). 
We may determine B in terms of A as 

B = (a + P)-'(a - PjA 
where a = Szzi KI + KISIZKI and p = 4 2 1  + i KlSll. 

By applying boundary conditions only at the interfaces of regions I1 and I and of II 
and I11 the calculation proceeds rapidly. However, because we have a repulsive potential, 
there are a significant number of classically forbidden or tunnelling states corresponding to 
negative values of K 2  on the diagonal of M, which are a potential source of numerical 
instability in a calculation. 

We consider first the 'weak-field case' (with EO = 4.900 V m-l and a decay length of 
2600 A), as it is reasonable here to exclude terms with K;" < 0 at the angles of incidence 
considered. Subsequent diagonalization will not then produce negative eigenvalues. 

Results are plotted in figure 3 as a function of incident angle for a 700-slice calculation 
and for a field depth of 6000 A. The results are stable for Si > 4 mrad and are essentially 
similar to those obtained in 111. For 6, c 4 mad, since K Y  = KO sin&, the incident kinetic 
energy falls below the effective barrier potential, promoting tunnelling states with K:" e 0. 

In table 1 the rate of convergence obtained for decreasing slice thickness is seen by 
comparing the results for 100, 500 and 700 slices, for the fixed field depth of 6000 k It 
can be seen from figure 3 that the strongest diffracted beam (n = + I )  is still very weak 
compared to the specular beam; the n = -1 beam is still weaker and off the scale of the 
plot. This justifies the restriction to four beams, a requirement of the condition for excluding 
negative values of K$. 

Y 1  
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Table 1. Results oMained by slicing the optical potential into 100.500 and 700 slices respectively 
in the weak4ield case, shown here for the + I  and zero-order diffracted h s .  

100 slices 500 slices 700 slices 

bk(mrad) n = + l  n=O n = + l  n = O  n = + l  n = O  
4 0.254 x IO-] 0.931€+00 0.604 x IO-] 0.880 0.482 x IO-' 0.884 
5 0.210 x IO-' 0 . 3 3 M  0.976 x 0.364 0.973 x IO+ 0367 

7 0.454 x IO" 0,366 x IO-' 0.644 x 0.276 x IO-' 0.621 x IOM2 0.278 x IO-' 
8 0.200 x 0.140 x IO-1 ,0.439, x IO-) 0.173 x IO-1 0.395 x IOF3 0.175 x IO-' 
9 0.153 x 0.923 x 0.135 x 0.103 x IO-] 0.901 x 0.103 x IO-' 

10 0.976 x IOb4 0.666 x 0.61 1 x 0.524 x 0.706 x 0521 x 

6 0.118 x 10-2 0.712 x IO-' 0.733 x 10-2 0.674 x 10-1 0.724 x 10-2 0.680 x 10-1 

5. Reformulation of boundary conditions for the strong-field case 

When p,!,'' in (IO) is imaginw the higonometric functions in the slice operator become 
hyperbolic. This is the cause of the instability in the calculation. The hyperbolic terms 
are entirely physical as the slice operator still conserves flux (or 'probability'). In practice 
these terms quickly become many orders of magnitude greater than the trigonometric terms, 
rendering the calculation unstable, considering the limitations of the computer. The use of 
thinner slices allows the terms within each slice to be manageable in themselves; however, 
this also necessitates the use of more slices and the total operator contains the same 
unmanageable terms as before. If, however, boundary conditions are applied after each 
slice, stability can be maintained incrementally, and computer overload avoided. For this 
procedure we envisage a vacuum separation between neighbouring slices Ay, which may 
have an arbitrarily small value, as indicated diagrammatically in figure 4. It can easily be 
shown that the solution becomes physically correct in the limit Ay + 0. 

Detuning: 2CHz 
E field: 49000 V/ 
velocity: eOOm/r 

0.6 

0.4 n 

Bi in m . r a d .  

Figure 4. Modification o f  figure 2 where the slices o f  thickness 
o are shown separated by a vacuum space AV. 

Figure 5. Intensities o f  specular (n = 0) and 
+ I .  t 3  difiacted h s  for the swong-field case 
(E  = 49000 V m-]) and a field depth of 
18oM) A. From a 13-beam calculation using 
1 A slices and 2 CHz detuning. 

The calculation begins at the slice adjacent to the quartz interface, since there is no 
reflected wave incident on the exit face for this slice, with the crystal being treated as a 
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sink for the de Broglie waves. Letting 

U, = exp(i K~pa) U,' = exp(-i K p u )  

the boundary conditions for this pth slice (the starting slice for OUT calculation) adjacent to 
the quartz interface are given by 

up+dp+~ = SPl(UpAp + UPBPI + Sr2iKdUpAp - u,*Bp) 
i K&Jp+~Ap+l = S,P,(U,Ap + Ui.8,) + S12i K1(UPAp - U,"B,). 

(17) 

The U*-terms in (17) still contain elements propoaional to exp(Kly) when the elements of 
KI are imaginq. However, by first taking the products 

U,A, = U,*BP = 

equation (17) becomes 

and no longer contains unmanageable terms. The equations in (18) are of exactly the Same 
form as equations (16). and therefore by inspection 

*; =(ap+Pp)-l(ap-Pp)@p+ =rpQp. + 

The equations relating the pth slice to the ( p  - 1)th slice, which has both transmitted and 
reflected waves at both surfaces, now appears as 

9; +a; = S~; ' (9~- l  + + Sp;'i KI(@;-, - 

(19) iKl@p+l t - - s P - l  21 ( *+ p - l  + O,,) t S&'iKd*'p+, - @& 

From these equations it follows that 

rP-, = (ap-] +pp-l)-'(ap-l - @ p - l )  

= ~ p - l Q ~ - ,  where 

ap-l = SL-'iKI+ KIR,S;;'KI 

PP-l = Sl;' i- iKIR,SP;' R p  = (1 - r p ) ( l +  7 J - l .  

Hence by starting at the slice adjacent to the optical interface, and progressing slice by slice 
towards the vacuum, successively applying boundary conditions, we can evaluate the exit 
wavefunction for back-scattering, 9; = Bo. 

The procedure outlined above now resembles the method recommended by Ichimiya [8] 
for the calculation of RHEW) intensities more closely than the procedures in {SI. 
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6. Computed intensities using the revised method 

Figure 5 shows the results from a 13-beam calculation, for a thickness of 18ooO 8, using 
one slice per Angstriim (18 OOO slices). The other parameters of the calculation are atom 
velocity: 600 m s-l; field, 49000 V m-' and detuning: 2 GHz. These laner are the 
parameters used by Opat and Hajnal 111. 

The main results are the sudden drop in the n = 0 intensity at around 0inc = 7 mrad 
and the rise in the n = +1 beam at that angle; and the further drop in the n = 0 beam at 
around S,, = I I mrad with the rise in the n = t3 beam. The i 1 and i 3  beams then reach 
8% and 7% of incident beam value respectively. Of these the + I  beam has real propagation 
for all angles 0 + 25 mrad, while the +3 beam has a finite amplitude only in the range 
I 1  mrad 4 25 mrad. This latter result is consistent with the fact that the distance (from the 
interface) of I SO00 8, is suficient for evanescent propagation (with K:n O), detected for 
this beam in the calculation at low angles, to be extinguished. The third most prominent 
diffraction order, for n = +2, which peaks at Si, = 16 mrad is not plotted because its 
maximum value is a tenth that of the odd-order peaks. 

Intemal consistency of the calculation can be tested with respect to number of beams 
included and slice thickness, and the calculation can be considered optimized when either 
increasing the number of beams or the number of slices used to represent the same potential 
does not significantly change the results. Calculations were run separately with 11 and 
13 beams for the above case; these two results for the cenaal six beams are shown in 
table 2, as 'a' and 'b', for eight different incident angles. The differences between these 
two calculations are small for all beams which are above 1% (of the normalized incident 
beam) in intensity and insignificant for all beams above 10%. these differences beiig 10% 
and 1% (i.e. 1% and 0.1% of the incident beam in absolute terms) respectively. The one 
noticeable difference appem'ng in the table, in the entries for i 2  beam for 16 mrad, arises 
from a very small shift in the angular position of the steep rise for that beam between the 
1 1 - and 13-beam calculations. 

Such differences are an indication that 13 beams is still a conservative number for the 
precise location of such tuming points. However, the conclusion reached here is that 13 
beams are totally adequate for present experimental predictions. In a further test, further 
division of the 18000 A field by halving the slice thickness and using 36 O00 slices produced 
no perceptible difference in the results, as is seen from the last two entries in table 2. This 
shows that the subdivision to 1 8, slices used here is sufficient to give convergence to the 
correct solution, and in fact is over-fine. 

We conclude therefore that the peaks recorded in figure 5 are physically significant. 
These results show a pleasing degree of agreement with those obtained previously by a 
completely different approach [I], although these earlier results predicted higher n = +2 
and +3 peaks and a lower + I  value. The characteristic feature which the two sets of curves 
have in common, that of the initial plateau for the n = 0 beam which terminates in a 
sudden drop, corresponds to a critical angle in wave optics, or a classical tuming point in 
the equivalent particle model. The two calculations differ also in the location of this turning 
point (the present calculation giving 7 mrad compared with 10 mrad in [l]). 

On the other hand, recent investigation by Deutschmann, Ertmer and Wallis [9] found 
that very little coupling to the diffraction orders occurred for similar conditions. However, 
their calculation was restricted to 2 x 2 matrices arranged in block-diagonal form within 
the n x n matrix. Many effects considered in our calculation such as evanescent atomic 
propagation and n-beam interactions were therefore omitted. 

Finally, a calculation was made for smaller detuning, 1 GHz, and the results are shown 

' 
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Table 2. Upper panel: intensities wmpured for diffraction orders for the two calculations of 1 I 
and 13 teams (a and b) for the field depth 18wO A using I A slices. The value of the incidence 
angle e, is shown in the extreme left-hand column. Lower panel: intensitien computed for 
diffraction o r h  for the. two calculations for (c) 1 A slices aod (d) 0.5 A slices, both for the 
field depth 18OLM A and using 13 beams, calculated for 8, = I d. 

Beam No 

einc (mad) +3 +2 +I 0 -1 -2 

l a  0.140 x 0.253 x IO-” 0.788 x 0.100 x IOt1 0.161 x IO” 0.202 x 
b 0.790 x 0.387 x IO-”  0.122 x lo4 0.100 x lot1 0.731 x IO4 0.182 x 

4 a  0.865 x 0.726 x IO-” 0.183 x 0.100 x 10” 0.120 x 0.356 x 
b 0.168 x 0.532 x IO-” 0.115 x IO-‘ 0.100 x IOt’ 0.270 x I O y 6  0.150 x 

7 a  0.335 x IO-” 0.146 x 0.577 x IO-] 0.141 0.339 x 0.333 x lo-’ 
b 0.319 x I O d 3  0.135 x 0.537 x 10-l 0.140 0.325 x IO-’ 0.267 x lo-’ 

10 a 0.353 x IO-” 0.321 x IO-’ 0.866 x IO-’ 0.463 x IO-’ 0.562 x IO-’ 0.302 x IO-‘ 
b 0.329 x IO-’’ 0.299 x IO-’ 0,808 x IO-’ 0.483 x IO-’ 0.551 x IO-’ 0.216 x IO-’ 

13 a 0.115 x IO” 0.117 x 0.242 x IO-’ 0.1248 x IO-’ 0.193 x IO-’ 0.105 x IOn3 
b 0.395 x IO-’ 0.263 x IOw6 0.214 x IO-] 0.185 x IO-’ 0.165 x IO-’ 0.723 x 

16 a 0.327 x IO-’ 0.223 x 0.114 x IO-! 0.128 x IO-] 0.353 x 0.930 x 
b 0.643 x IO-’ 0.203 x IO-1 0.175 x IO-’ 0.104 x lo-’ 0,375 x 0.117 x lo-’ 

19 a 0.200 x IO-’ 0.898 x 0.134 x IOM1 0.239 x IO-* 0.473 x 0.130 x lo4 
b 0.287 x lo-’ 0.118 x lo-’ 0.139 x IO-] 0.219 x 0.390 Y 0.258 x IO4 

22 a 0.813 x IOpz 0.162 x IO-’ 0.769 x 0.147 x IO-’ 0.325 x 0.871 x 

1.0 Thickness: 18000A 
0.9 - “=O Deiuning: lGHz - 

E field: 40000 V/m 0.8 - 
No. of slices:18000 

0.7 - No. of beams:13 - 
0.6 - 

- ~ . ~  ~.~ ~ . ~ , . ~ . .  ... :. . .. .. . - - .  .- 

. 

IMZO.S - - 
0.4 - 

0.3 - 
0.2 - 
0.1 - 

- 

- 

- 
: d  . .  - 

n=+1 . a .  0.0 _-.- _ _ _  ._._ ..... .. ,. . . . . . . .4 :.:.- 

b 0.103 x IO-’ 0.684 x IO-’ 0.832 x 0.124 x IO-* 0.284 x 0.183 x 

Ream. 

Few 6. A similar plot to that in figure 5, only 

11 e 0.164 x 0.410 x 10‘” 0.763 x IO-’ 0.100 x IOt1 0.665 x IO-’ 0.203 x 
13 d 0.163 x 0.399 x lo-” 0.735 x 0.100 x IOc1 06% x 0.204 x lo-‘ 

in figure 6. This calculation shows a substantial increase in contribution to the n = f l  
peak plus a longer tail to the n = 0 peak relative to the case with a &tuning of 2 GHz. 
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