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Calculation of back-reflected intensities of a Na-atom beam by
a standing evanescent F-)M field
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i Department of Physics, Monash University, Clayton, Victoria 3168, Australia
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Abstract. A method is described for the computation of the back-scattered intensities of atomic

“ beams, diffracted from the evanescent field generated outside an optical plate by internal counter-
propagating laser beams. The method derives from a procedure developed for the similar but
importantly differing problem of low-energy electron diffraction (LEep). Modifications to that
theory required for the present problem bring the equations closer to the reflection high-energy
electron diffraction. (RHEED) solution proposed by Ichimiya. Preliminary calculations for the
strong-field case indicate that diffracted beamns occur with intensities of 7% and 8% of the
incident beam which if correct should lead to detectable diffraction effects.

1. Introduction

Recently, atomic de Broglie wave diffraction by a standing evanescent wave fieid has been
investigated both theoretically [1] and experimentally [2], for the case of a monochromatized
Na-atom beam incident on the vacuum interface of a light-transmitting quartz block. The
solution suggested in [i], namely that of a Green’s function iteration, has been tried
previously in eleciron diffraction and found to be very slowly convergent. This problem,
present in the high-energy case of forward scattering, is likely to be exacerbated in the
case of the complete solution which includes both backwards and forwards scattering. The
alternative approach, known in electron diffraction physics, as ‘multi-slice’ [3], has all
the advantages of a closed, summed solution which is limited to elastic or pseudo-elastic
processes. This formulation has been expanded to a compiete solution which includes back-
scattering by Lynch and Moodie [4] and Lynch and Seith [5]. For the present problem,
involving the transitions of a two-level atom, this description is valid and the method should
transfer, with consequent substantial savings in computation effort and time when compared
with the above method {1].

The present paper gives firstly a brief discussion of the approach and a few hasic
equations, and secondly some initial results, for both weak- and strong-field cases.

2, Solutions to Schrodinger’s equation
The time-independent Schrodinger equation may be written as
Vi +y(E— V), =0  with y =2m/p’ 6))
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in a completely general way, where r represents spatial coordinates in one, two or three
dimensions according to the particular problem. In applications in three-dimensional space
involving a potential V periodic only two dimensions it is usual to choose the coordinates
X, ¥, z so the unique direction definable in most laboratory experiments coincides with
either the y (or z) direction, and to Fourier transform the equation with respect to the non-
unique directions in which V is periodic (xz/xy) (‘semi-reciprocal’ space: [1,4]). This
then permits us to write (1) in matrix form and as a second-order differential equation in
one dimension as

d*yp/d’y = My 2

with ¢ as the unique direction, and where M = y(E — V) is a square matrix in which
E and V form the diagonal and off-diagonal terms respectively, i.e. the diagonal elements
contain the terms 4?(y) (with & = 27/A), and the off-diagonal elements contain the Fourier
coefficients of the optical potential.

There is some advantage at this stage in considering the solution to the transmission
electron diffraction case, where for example Cowley [6] has shown that the matrix M may
be replaced to a good approximation by a matrix L in which the diagonal terms have
been linearized (the so-called ‘forward-scattering’ approximation). Using the coordinates
of our present problem, where the free (non-quantized) momentum is restricted to the ¥y

direction and there is no z dependence in the equation, the forward-scatiering solution for
Schradinger’s equation is

P(h, y) = exp(iLy)(0) = Sy (0) (3)

where 4 is the diffraction space coordinate recipracal to x and 4 is now used to denote the
wavefunction in ‘semi-reciprocal’ space coordinates. This solution applies provided a matrix
L can be found for which the interaction potential (off-diagonal) terms are independent of
y. The diagonal terms consist of the y-resolved momenta &, which are not functionally
dependent on y. This condition will be referred to throughout this paper, or is an implied
condition of future equations. The operator form of solution to (3) using the scattering

matrix S = exp(il.y), may be brought to numerical evaluation, either through the Taylor
(i.e. Born series) expansion

S =1+ (iLy) + (iLy)?/2! + (iLy)*/31 + ... (4)
or through the product expansion
S = exp(iL 8yy) exp(iL. 8y;) exp(L 833) . .. (5)

with ¢ = 3, 8y;. Equations (4) and (5) formally represent alternative approaches to solving
(1), namely the Born series expansion, and the multi-slice expression (analogous to the
Feynman path integral approach [3]), respectively,

In the more general case including back-scattering the complete second-order equation
(2) must be solved. Adopting now a method for reducing the order of the differential
equation, given in [4], we substitute the first differential of the wavefunction

Y =dyp/dy
giving
dy'/dy = —M(y)y.
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Introducing ‘supermatrix’ notation [7,4] allows us more compact notation. Hence,
d¥/dy = M(y)® ()]

becomes our master equation, with ¥ a supercolumn vector of order two whose elements '
are the infinite column vectors 4p, 4, that is

(2)

i.e. the scattering amplitudes and their derivatives for the various diffracted directions, and

0 1)
M = () o)

is the 2 x 2 matrix whose elements are square matrices; M(y) has the elements defined
previously; | is the identity matrix of the same order as M, and 0 is the equivalent null
matrix.

If M is independent of y, the solution to (6) may be written as

¥ = exp(My)¥(0) = SF(0). )

This equation is now analogous to (3), but in supermatrix form so that both backward and
forward scattering are included. The solution differs from the analytical form of (7) when
M is dependent of y; it is then useful to consider slicing the operator in order to obtain
matrices which may be considered as independent of y, following the logic of (3).

Hence, expanding S as the product series

S =38p8p-1...8 (8)

gives us the multi-slice expansion, in which the general term s,_, = exp(Mp-r AYp—n)
is called the ‘slice operator’. These expressions will be made applicable by taking slices
normal to ¥ sufficiently thin so that the potential is effectively constant within each slice.
In (7) the complex exponential of (3) is not evident, aithough required for elastic scattering.
The apparent inconsistency is resolved in the derivation of exp(MA): taking a constant
slice thickness 8y = A, we may expand

2
“""‘Mm:‘”‘p[(-om 5)A]='+(-0M tll)“(_om ~0M)%
{0 -M\ &
(Mz 0 )?....

On the other hand the terms may be combined differently to give

/2 A2 27133 4 12
exp(MA) = ] - ‘(M 21A) | Ma) | 0 M )

M'72AN? 0 M-12 MIZAN 0 M-1/2
(57) (e M)+ (57) (e 07)-

—m+mwm(
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This may be written in mairix form as

exp(MA)
1 exp(i AM'/2) 4 exp(—i AMY?) —iM~ 2 (exp(i AM'/?) — exp(—i AM/2))
~ 2L iMY2(exp(i AM'/2) — exp(—i AM'/?)) exp(i AMY2) 4 exp(—i AM'/2)
(9a)
which in turn condenses into
_ cos(M'2A) M-!/25in(M'/2A)
exp(MA) = (—I\ﬂ”2 sin(M'72A) cos(M!2A) (96)

It is clear now that (9a) above is the complex exponential equivalent to that in (3), with
the inclusion of the backward scattering, giving the analytical advantage of yielding the
dual forms of Bom series expansion and unitary matrix, following the path shown earlier
in (4) and (5) for forward scattering.

The operator (95} is evaluated numerically using a Jacobi routine which diagonalizes
this scattering mairix by a complex plane rotation

xMx = p
where x and x! represent a unitary matrix and its inverse, and p is the diagonal matrix
with the eigenvalues g, ga, ..., fi, as entries. The slice operator may now be written as
12 142 .o 172
cos{y” A) pp sin(peg A)) 4
exp(M,A), = ( ] X (10)
PMpA =X _ P sinul?a)  cosiul?A)

for the pth slice.

In general the equal-thickness slices will not have the same potential, 50 the s will be
slice dependent. 1t is a particular feature of this expansion that (8) can be evaluated by the
sequential multiplications of the slice operator (10), with application of boundary conditions
needed to determine the amplitudes of the diffracted beams being carried out as a final step.

3. The Hajnal-Opat equations

Figure 1 shows the geometry of the experiment for reflection—diffraction of atoms from
a standing evanescent wave field. We define wy and w as the characteristic frequency of
the two-level atom and the frequency of the incoming light beam respectively. This beam
directed from a laser into the quartz block is retro-reflected to give a standing wave at the
quartz-vacuum interface. Under conditions of total internal reflection, a standing evanescent
wave field is generated above the interface and extending into the vacuum. Upon entering
this vacuum field, the ground state atom experiences a gradient force which is repulsive
or attractive for a positive or negative detuning Aw = w — @y, In agreement with the
Kramers—Kronig relationship.

The Hajnal-Opat formulation [1] of Schrédinger’s equation for this interaction is given
as

(@ /dy* + K2 (y) = ~(2e Eoma/h )41 (7) + Pne1 ()] exp(—qY) (11)



Back-reflected intensities of a Na-atom beam - — -~ - 4669

Alomic beam

Evanescant

/skmdlng wave

Refraciive medium
Index N
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with m, the atomic mass, and where

K2 = K2 — 0*n® — 2nQK, — (2ma/h) (e — w) n odd (12)
Kyzn = Kﬁ — 0% — 200K, n even. (13)

Ky = K, +nQ, where #Q = transferred photon momentum, along the x direction, while
O and g are the x- and y-resolved components of the electromagnetic wave vector given
by

Qh +iql = (w/c)NGin@)h + i{w/c)(N sin® 8 — DV

where N is the refractive index of the quartz block, and k and I are the unit vectors of
momentum parallel to the x and y directions [1], and

€Eq = {alEbY Eq

where £ is the eleciric dipole operator and £y is the electric field amplitude.

An incoming atom, which we assume to be a plane wave, is scattered by the electric
field and emerges in plane-wave solutions that must satisfy (11). Initially the atom is in the
ground state. In making a transition to the excited state by the absorption of a photon from
either of the counter-propagating evanescent waves there will correspondingly be a positive
or negative increment in the x momentum of the atom leading to a transition to either of the
n = %1 (odd) diffraction orders. A further transition back to the ground state by stimulated
emission will then result in a further momenturn exchange due to the emission of a photon
to either counter-propagating wave, resulting in a transition fromn =Iton =1+1 = 2,0,
representing a return to even states. Hence, the ground and excited state atoms are to be
found in the n-even and n-odd momentum states respectively. Furthermore, for n-odd Ky,
has a contribution proportional to the detuning (@ — aq) given by the last term in (12)
which cancels for n even. Hence the odd diffraction orders will move in position actoss
the stationary even orders as the detuning is varied.

Hajnal and Opat used the integral equation method to solve (11), using the solution

W, (Y) = bpgexp(—iKoY) — f Gn(Y — Yo)P(Yo}dY
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where

P(Y} =y uEol(¥n41(Yo) + ¥, (Yo)] exp(—qY))

and G, is a Green function:
Gn(Y — Yo) = exp(i K;n|Y — ¥p|)/2i Ky
This is an iterative method, where ¥, is cast in an integral series form which identifies
with the Born series (see (4)). This series is slowly convergent when Ej is large.
4. Computed intensities using the Lynch-Smith procedure

The alternative method using LEED theory involves rewriting (1) in matrix notation as

£ ’¢"—n ¢-—-n
7z O -M(»n{ : (14)
Pu Y
where
I 0 0 0]
Kf,_, a 0
Mp)=i0 o K3 o o= Zm;:; & exp(—qy)
¢ 0 a KI,
10 O .

and slicing the potential normal to the y-axis so that slice boundaries are parallel to the
optical interface in the experiment. If we wish to keep slice thicknesses Ay constant,
we need to choose a slice sufficiently thin that in the region of maximum field gradient
neighbouring y = 0, the interaction term may be assumed constant; i.e. we wish to map
the exp(—gy} field dependence as a step function in y, as shown in figure 2. This allows
us to adopt the ‘zero-layer® approximation of electron diffraction [4], with y-independent
interaction terms in each slice.

Lynch—Smith procedures then involve applying boundary conditions to the cumulative
product of (8). Writing

ST, = {51 Su){
w(y)—swo—(szi 5;2) (¢g) as)

i(y) = expiKig) A + exp(~iKiy) B

for region I, as defined in figure 2, where K; denotes a diagonal matrix with K, terms as
elements, and
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Figure 2. Diagram showing the computational scheme for Figure 3, Intensitics of specular (n = 0} and
slicing the optical potential in region I1. Here, region | contains  # = +1 diffracted beam obtained from a 4-beam
the source and defector system and region II! represents the  calculation for the weak-field case (£ = 4900 V
refractive medium. Steps show a qualitative similarity with ™) and field depth of 6000 A, using 700 slices
the exp(—qy) field dependence. and a detuning of 1 GHe.

For region I, since there is no wave incident from the right
P = exp(i Ki) B K; = Ky;.

Applying boundary conditions
exp(i KiH)E = §1,(A + B) + 52Ki(A — B)

iKiexp(i KiH)E = S31(A + B) + SniKi(A - B)

with H = na the total depth of the potential {(n is the number of slices and a is their width).
We may determine B in terms of A as

. B=(a+p8) a-PHA

where o = §p,i Ky + KiS2K; and 8 = =83 + i K Sy,

By applying boundary conditions only at the interfaces of regions I and 1 and of IT
and III the calculation proceeds rapidly. However, because we have a repulsive potential,
there are a significant number of classically forbidden or tunnelling states corresponding to
negative values of Kf,,, on the diagonal of M, which are a potential source of nurnerical
instability in a calculation.

We consider first the ‘weak-field case’ (with Eg = 4.900 V m~! and a decay length of
2600 A), as it is reasonable here to exclude terms with K 22 < 0 at the angles of incidence
considered. Subsequent diagonalization will not then produce negative eigenvalues.

Resuits are plotted in figure 3 as a function of incident angle for a 700-slice caiculation
and for a field depth of 6000 A. The results are stable for 8 > 4 mrad and are essentially
similar to those obtained in [1). For 6; < 4 mrad, since X ;,"“ = Ky sin6;, the incident kinetic
energy falls below the effective batrier potential, promoting tunnelling states with X _3,, < 0.

In table 1 the rate of convergence obtained for decreasing slice thickness is seen by
comparing the results for 100, 500 and 700 slices, for the fixed field depth of 6000 A. It
can be seen from figure 3 that the stronpest diffracted beam (# = +1) is still very weak
compared to the specular beam; the 1 = ~1 beam is still weaker and off the scale of the
plot. This justifies the restriction to four beams, a requirement of the condition for excluding
* negative values of K7,.

(16)
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Table 1. Results obtained by slicing the optical potential into 100, 500 and 700 slices respectively
in the weak-field case, shown here for the +1 and zero-order diffracted beams.

100 slices 500 slices T00 slices
Bine (mrad) n = -+1 n=0 =4l n=0 n=+1 n=0
4 0.254 x 10~ 0.931E+00 0.604 x 10~ 0.380 0482 x 1071 0.884
5 0210 x 10! 0.337E+00 0976 x 10~ 0.364 0973 x 1072 0.367
6 0.118 x 1072 0.712x 10-! 0733 x10°% 0674 x10°' 0.724 x 1072  0.680 x 10~!
7 0454 % 1072 0366 x 10~! 0644 x 10~ 0276 x 10~! 0.621 x 1072 0.278 x 1071
8 0200 1072 0140 x 107! 0.439x10"% 0.173x 107! 0395 x10"® 0.175 x 10~}
9 0153 %1077 0923 x10-2 0.135x10"% 0.103 x 10~! 0901 x 10~* 0.103 x 10!
10 0976 x 10™*  0.666 x 10~2  Q.611 x 10~% 0524 x 10~2 0706 x 10~ 0.521 % 1072

5. Reformulation of boundary conditions for the strong-field case

When u},’ % in (10) is imaginary the trigonometric functions in the slice operator become
hyperbolic. This is the cause of the instability in the calculation. The hyperbolic terms
are entirely physical as the slice operator still conserves flux (or ‘probability’). In practice
these terms quickly become many orders of magnitnde greater than the trigonometric terms,
rendering the calculation unstable, considering the limitations of the computer. The use of
thinner slices allows the terms within each slice to be manageable in themselves; however,
this also necessitates the use of more slices and the total operator contains the same
unmanageable terms as before. If, however, boundary conditions are applied after each
slice, stability can be maintained incrementally, and computer overload avoided. For this
procedure we envisage a vacuum separation between neighbouring slices Ay, which may
have an arbitrarily small value, as indicated diagrammatically in figure 4. It can easily be
shown that the solution becomes physically correct in the limit Ay — 0.

T T L T T T
.G E.._...........“"ﬂ Thickness: 180004

z [ Detuning: 2GHz
W E field: 49000 V/
08 - Velocity: 800m/s

Incideny

polentiofl”

£
° 3
wave — o
| & | &>
PN Ladha s J
cimall Tesnsenited T
¥ i ' wave
Rofiocied | . o 5 10 15 20 25
ve o > -
e H=na 8% in m.rad.

Figure 4. Modification of figure 2 where the slices of thickness
a are shown separated by a vacuum space Ay.

Figure 5. Intensities of specular (n = 0) and
+1, +3 diffracted beams for the strong-field case
(E = 49000 V m™!) and a field depth of
18000 A. From a 13-beam calculation using
1 A slices and 2 GHz detuning.

The calculation begins at the slice adjacent to the quartz interface, since there is no
reflected wave incident on the exit face for this slice, with the crystal being treated as a
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sink for the de Broglie waves. Letting
U, = exp(iK:pa) U} = exp(—iKpa)

the boundary conditions for this pth slice (the starting slice for our calculation) adjacent to
the quartz interface are given by

Upilpss = SHULA, + UB,) + SHiK(U,A, — UZB,)

(17
iKUps1Bpyy = Szpi (UpAp + U;Bp) + Szpzi K](UpAp - U;Bp)

The Ur*-terms in (17) still contain elements proportional to exp(Kyy) when the elements of
K are imaginary. However, by first taking the products

equation (17) becomes
B, =SH(®) +2)+SLiK(®, ~- &)
iKi®Y, | = 87, (8] + 8;) + SHi K@) - €;) (18)

and no longer contains unmanageable terms. The equations in (18) are of exactly the same
form as equations {16}, and therefore by inspection

&, = (0p + Bp) ey — BB} =7, F].

The equations relating the pth slice to the (p — 1)th slice, which has both transmitted and
reflected waves at both surfaces, now appears as

B + &, = STH@I + &, ;) + S5 IK(@] - ®,))

K@l =857 @)+ 8, )+ S5 i KBS, ~ &, ). (19)
From these equations it follows that &, _) = *yp_,@j_l where

Vo1 = (Qpot + Bp1) " (@po1 — Bp-1) oyt = 55 1K + K,RpSf{lK[
Boor =857 +iKRST! Ry=( -7+t

Hence by starting at the slice adjacent to the optical interface, and progressing slice by slice
towards the vacuum, successively applying boundary conditions, we can evaluate the exit
wavefunction for back-scattering, ®; = By.

The procedure outlined above now resembles the method recommended by Ichimiya [8]
for the calculation of RHEED intensities more closely than the procedures in {5].
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6. Computed intensities using the revised method

Figure 5 shows the results from a 13-beam calculation, for a thickness of 18000 A using
one slice per Angstrém (18 000 slices). The other parameters of the calculation are atom
velocity: 600 m s™!; field, 49000 V m™~! and deruning: 2 GHz. These latter are the
parameters used by Opat and Hajnal [1].

The main results are the sudden drop in the » = 0 intensity at around &, = 7 mrad
and the rise in the # = 41 beam at that angle; and the further drop in the n = 0 beam at
around @y, = 11 mrad with the rise in the # = +3 beam. The +1 and +3 beams then reach
8% and 7% of incident beam value respectively, Of these the +1 beam has real propagation
for all angles 0 — 25 mrad, while the +3 beam has a finite amplitude only in the range
11 mrad — 25 mrad, This latter result is consistent with the fact that the distance (from the
interface) of 18000 A is sufficient for evanescent propagation (with K fn < 0), detected for
this beam in the calculation at low angles, to be extinguished. The third most prominent
diffraction order, for n = +2, which peaks at 8, = 16 mrad is not plotted because its
maximum value is a tenth that of the odd-order peaks.

Internal consistency of the calculation can be tested with respect to number of beams
included and slice thickness, and the calculation can be considered optimized when either
increasing the number of beams or the number of slices used to represent the same potential
does not significantly change the results. Calculations were run separaiely with 11 and
13 beams for the above case; these two results for the central six beams are shown in
table 2, as ‘a’ and ‘b’, for eight different incident angles. The differences between these
two calculations are small for all beams which are above 1% (of the normalized incident
beam) in intensity and insignificant for all beams above 10%, these differences being 10%
and 1% (i.e. 1% and 0.1% of the incident beam in absolute terms) respectively. The one
noticeable difference appearing in the table, in the entries for +2 beam for 16 mrad, arises
from a very small shift in the angular position of the steep rise for that beam between the
11- and 13-beam calculations.

Such differences are an indication that 13 beams is still 2 conservative number for the
precise location of such turning points. However, the conclusion reached here is that 13
beams are totally adequate for present experimental predictions. In a further test, further
division of the 18000 A field by halving the slice thickness and using 36 000 slices produced
no perceptible difference in the results, as is seen from the last two entries in table 2, This
shows that the subdivision to 1 A slices used here is sufficient to give convergence to the
correct solution, and in fact is over-fine.

We conclude therefore that the peaks recorded in figure 5 are physically significant.
These results show a pleasing degree of agreement with those obtained previously by a
completely different approach [1], aithough these earlier results predicted higher n = 42
and +3 peaks and a lower +1 value. The characteristic feature which the two sets of curves
have in common, that of the initial plateau for the n = 0 beam which terminates in a
sudden drop, corresponds to a critical angle in wave optics, or a classical tumning point in
the equivalent particle model. The two calculations differ also in the location of this turming
point {the present calculation giving 7 mrad compared with 10 mrad in [1]).

On the other hand, recent investigation by Deutschmann, Ertmer and Wallis [9] found
that very little coupling to the diffraction orders occurred for similar conditions, However,
their calculation was restricted to 2 x 2 matrices amranged in block-diagonal form within
the » x n matrix. Many effects considered in our calculation such as evanescent atomic
propagation and n-beam interactions were therefore omitted.

Finally, a calculation was made for smaller detuning, 1 GHz, and the results are shown
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Table 2. Upper panel: intensities computed for diffraction orders for the two calculations of 11
and 13 beams (a and b) for the field depth 18000 A using 1 A slices. The value of the incidence
angle O is shown in the extreme lefi-hand column. Lower panel: intensities computed for
diffraction ovders for the two calculations for (¢) 1 A slices and (d) 0.5 A slices, both for the
field depth 18000 A and using 13 beams, calculated for finc = 1 mrad.

Beam No
G (mrad) +3 +2 +1 1] -1 -2
1a 0.140 x 107 0253 x 10~ 0.788 x 10~5 0.100 x 16! 0,161 x 1077 0.202 x 10-5
b 0.790 x 1077 0387 x 10~ 0122 x 10~ 0.100 x 10+ 0731 x 1075 (.182 x 106
43 0.865x 10776 0726 x 10~ 0,183 x 10~ 0.100x 107! 0120 % 10~° 0.356 x 10~6
b 0.168 x 10770 0.532x 107" 0.115x 10~* 0.100 x {0+! 0270 x 10~ 0.150 x 10-°
7a 0.335x 10713 0,146 x 107 0577 x 101 0.141 0.339 x 10~ 0.333 x 10~2
b 0319% 10713 0135x10°7 0.537%x 10" 0.140 0325 x 1072 0267 x 1072
10 a 0353 x 10717 0321 x 1077  0.866 x 10~! 0463 x 10! 0.562x 1072 0302 x 10~2
b 0329 x 10712 0.299 x 10~7  0.808 x 10! 0.483x10~" 0.551x 102 0216 x 1072
13 a DISx 1077 0.117x 1077 0242x 107! G.1248x 10°' 0193 x 1072 0,105 x 1073
" b 0395 x 107" 0.263x10~° 0214x10"7 0.185% 10°7  0.165 x 1072 0.723 % 10~5
16 a 0327x 1077 0.223x10°% 0114 x 107! 0128 x 10~ 0353 x 1073 0930 x 10~*
b 0.643x 1070 0203 x 1071 0175x10°" 0004 x 10! 0375 x 1073 0117 x 1073
19 a 0200 % 107" 0898 x 1072 0134 x10°! 0239 x 10?2 0473 x10~* 0.130 x 10—
b 0287 % 107! 0.118x 1072 0.139x 1071 0.219x10~% 0.390 x 1073 0258 x 10~
22 a 0813x 1072 0.62x 1072 0.769 x 10~? 0.147x 10~  0.325 x 10~} 0.871 x 10~%
b 0103 x 107! 0684 x 1075 0.832x1072 0,124x 107% 0284 x 10~ 0.183x 10~*
Beams
1t ¢ 0.164 x 10718 0410 x 10~ 0763 x 10-F 0,100 x 107! 0.665 x 1077 0203 x 176
13 4d Q163 x 10718 0399 x 10~Y 0735 % 1075 (L1G0x 10%!  0.666 % 1077 0.204 % 107¢

in figure 6. This calculation shows a substantial increase in contribution to the n = +1
peak plus a longer tail to the n = O peak relative to the case with a detuning of 2 GHz.
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Figure 6. A similar plot to that in figure 5, only
for a detuning of 1 GHz and a slightly reduced
field strength of £ = 40000 V cm™,
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